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Non-Hermitian random matrix models: Free random variable approach
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Using the standard concepts of free random variables, we show that for a large class of non-Hermitian
random matrix models, the support of the eigenvalue distribution follows from their Hermitian analogs using
a conformal transformation. We also extend the concepts of free random variables to the class of non-
Hermitian matrices, and apply them to the models discussed by Ginibre-Girko~elliptic ensemble! @J. Ginibre,
J. Math. Phys.6, 1440 ~1965!; V. L. Girko, Spectral Theory of Random Matrices~in Russian! ~Nauka,
Moscow, 1988!# and Mahaux-Weidenmu¨ller ~chaotic resonance scattering! @C. Mahaux and H. A. Weiden-
müller, Shell-model Approach to Nuclear Reactions~North-Holland, Amsterdam, 1969!#.
@S1063-651X~97!09704-3#

PACS number~s!: 05.45.1b, 11.15.Pg, 24.60.Lz, 11.80.Gw
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I. INTRODUCTION

The distribution of eigenvalues of complex and large ra
dom matrices is of relevance to a variety of physical pro
lems. Non-Hermitian random matrices appear naturally
the evolution of dissipative quantum many-body systems@1#,
in quantum chaotic scattering@2#, in quantum optics@3#, and
possibly in quantum chromodynamics@4#.

The distribution of complex energies of unstable quant
systems in the framework of random matrix models, h
been investigated in some details by Sokolov and Zelevin
@5#, following on the original work of Weidenmu¨ller and
co-workers@1,6#. Alternative and extended analyses can
also found in@7# using the replica method, and in@8# using
the supersymmetric method. For large matrices, a struct
change in the eigenvalue distribution within the comp
plane was observed in the case of strong non-Hermitic
The level density has been used to assess the statistica
tribution of the resonance widths in chaotic scattering w
large scattering channels@7#, and the time delay in chaoti
scattering@9,10#. The latter may be of relevance for a qua
titative assessment of quantum chaos@2#. Weak non-
Hermitian ensembles were recently investigated in@11#.

In this paper, we would like to show how to evaluate, in
straightforward way, the supports for the level density,
well as the eigenvalues distribution for a large class of n
Hermitian and random matrices using the concepts of
random variables as developed by Voiculescu, Dykema,
Nica @12# and popularized by Zee@13#. In Sec. II, we outline
the general definitions for the standardS andR transforma-
tions, as known for Hermitian random matrices. In Sec.
we discuss the resonance matrix model as an example
non-Hermitian random matrix model. In Sec. IV using t
concepts ofS andR transforms we derive the spectral de
sity of its Hermitian analog. In Sec. V, we show how th
support for a non-Hermitian spectral density follows fro
the Hermitian one using a conformal transformation. O
551063-651X/97/55~4!/4100~7!/$10.00
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arguments are applied to Ginibre-Girko’s@14# and Mahaux-
Weidenmu¨ller’s @15# random matrix models. In Sec. VI, w
generalize the concept ofR transforms to the non-Hermitian
case, and use it to analyze the resolvent of non-Hermi
random matrix models. Our conclusions are summarized
Sec. VII.

II. R AND S TRANSFORMATIONS

Addition and multiplication of free random variables ca
be assessed usingR andS transformations@12#. Specifically,
the R transformation is additiveR1125R11R2, and theS
transformation is multiplicativeS1325S1S2.

For the sum, if we were to define a Blue’s functio
B(z) @13# as the functional inverse of a Green’s functio
G(z), that isB@G(z)#5G@B(z)#5z, then theR function is
simply R(z)5B(z)11/z. Physically, theR transform is
some pertinent self-energy in the planar approximation@13#.
The additive property of theR transform implies the addition
law @12,13#,

B112~z!5B1~z!1B2~z!2
1

z
~1!

for the Blue’s functions. Hence, the problem of finding t
spectral distribution of the sum of two free random matric
is linear, and follows from the simple algorithm: FindG1
andG2, construct their functional inversesB1 andB2, add
them through Eq.~1!, and invertB112 to get G112. The
spectral density of the sum is the discontinuity ofG112
along the real axis. The zeroes ofB8(z)50 characterize the
end points of the spectral density@13#, and reflect structura
changes in the underlying spectrum.

For the product, if we were to definex(z) as a solution
of @12#
4100 © 1997 The American Physical Society
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55 4101NON-HERMITIAN RANDOM MATRIX MODELS: FREE . . .
1

x~z!
GS 1

x~z! D215z ~2!

then theS function is simply

S~z!5
11z

z
x~z!. ~3!

TheS transform of the product of two free random matric
is the product of theirS transforms that isS1325S1S2.
GivenS132, the resolventG132 follows through Eqs.~2! and
~3! in reverse order.

III. RESONANCE SCATTERING MODEL

To make part of our subsequent discussions clear, we
use the non-Hermitian random matrix model introduced
Mahaux and Weidenmu¨ller for resonance scattering@15# as
inspired by the Weisskopf and Wigner effective Hamiltoni
@16#, to illustrate some of our assertions. In brief, a quant
system composed of (N2M ) closed andM open channels
can be described by the effective scattering Hamiltonian

H5HR1 igG, G5AAT, ~4!

which isN3N dimensional.A is an asymmetricN3M ran-
dom matrix, andg an overall coupling. Unitarity enforces th
form of G used in Eq. ~4!. Wigner’s condition implies
g,0. The matrix elementsAk

a characterize the transition be
tween the (N2M )-internal channels andM -external chan-
nels, and are assumed to be independent of the scatt
energy. ForM50, the Hamiltonian is real and the spectru
is bound. ForMÞ0, the Hamiltonian is complex, with al
states acquiring a width.

The resolventG(z) associated to Eq.~4! is defined as

G~z!5
1

N K Tr 1

z2H L , ~5!

with complex valued poles reflecting the energy and width
the resonance states. Its imaginary part is related to the
lifetime ~time delay! in the scattering process. The averagi
in Eq. ~5! corresponds to the GOE ensemble forHR , with
the transition matrix elementsAk

a treated as independen
Gaussian variables@7#. The simpler case~‘‘ f case’’ @6,8#!,
where the matrix elements are fixed, will be briefly discuss
later. In its domain of analyticityD, G(z) is a holomorphic
function ofz. In the complementD̄, G(z) is in general non-
holomorphic, with a nonvanishing spectral distribution@17#

n~z,z̄!5
1

p

]G~z!

] z̄
. ~6!

The latter provides for a statistical analysis of the charac
istics of the resonances in chaotic scattering for a large n
ber of channels@7,9,18#. It can also be used to discuss Dick
super-radiance in quantum optics@3#.
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IV. HERMITIAN CASE

First consider the case of anN3N real symmetric product
matrixGkl

S5Ak
aAl

a . In the largeN limit, the spectral function
is connected to the one of the randomN3N matrix A as

nG
N3N~z5l2!5

nA~l!

ulu
5

1

2p

A42z

Az
. ~7!

The numerator of Eq.~7! is just Wigner’s semicircular law
@19#. The case of rectangularN3M matrices with
N,M→` but m5M /N fixed, follows by truncation using
the projector@20#

~8!

that isG5GSP. We recognize immediately the problem o
‘‘multiplication’’ of the random matrixGS by the determin-
istic projector P. Following the multiplication algorithm
@12,20#, we construct below the resolvent for the produ
First, we construct the resolvent for the projector

GP~z![
1

N
Tr

1

z2P
5m

1

z21
1~12m!

1

z
. ~9!

TheS transform is

SP~z!5
11z

m1z
. ~10!

The resolvent for the square of the Gaussian is

GA25
1

2 F12S 12
4

zD
1/2G . ~11!

Its discontinuity along the real axis reproduces Eq.~7!. The
correspondingx andS transformations are

xA25
z

~11z!2
, SA25

1

11z
~12!

so the product matrix has

S5SA2SP5
1

m1z
~13!

and

xA23P5
z

~11z!~m1z!
. ~14!

Inverting Eq.~14!, and insertingz(x) into Eq.~2! we get for
the resolvent

G~z!5
12m

2z
1
1

2 H 16F S 12m

z
21D 22 4m

z G1/2J . ~15!

The spectral density follows from the discontinuity of E
~15! along the real axis in the form
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n~l!5~12m!d~l!1
1

2p F4ml 2S 12m

l
21D 2G1/2. ~16!

This result was first obtained in@21#, using other methods
The first term, originating from the pole 1/z represents
(N2M ) zero modes of the matrixG.

Now we could ‘‘add’’ the random HamiltonianHR . It is
convenient first to solve the Hermitian proble
HH5HR1gG. This problem is immediately solved using th
R transformation~Blue’s function!, since the resolvent fo
GOE is known to be

G~z!5 1
2 ~z2Az224! ~17!

and the resolvent forG is given by Eq.~15!. The correspond-
ing Blue’s functions are straightforward to find

B1~z!5z1
1

z
,

B2~z!5
mg

12gz
1
1

z
, ~18!

where we have reinstated the couplingg. The labels 1~2!
refer toHR(G) , respectively. From the addition law follow
the resolventG of the sumHH , as a solution to a cubic
equation~Cardano class!

z5
1

G~z!
1

mg

12gG~z!
1G~z!. ~19!

Out of the three solutions to this equation, we choo
uniquely the one respecting the positivity and normalizabi
of the spectral density. Structural changes in the spectral
sity can be easily read out from the zeros ofB8(z)50 ~end
points!, whereB is the Blue’s function for the sum. Thi
equation is fourth order~Ferrari class!

21/z21
mg2

~12gz!2
1150 ~20!

and defines all the end points of the spectrumAi5B(zi),
( i51,2,3,4). A structural change~usually a phase transitio
in the underlying system! happens when two arcs@A1 ,A2#
and @A3 ,A4# merge into the one~i.e., A25A3). ~In the
present case, the spectrum is not even in contrast to the c
cases considered in@22#.!

The condition for the structural change~merging point!
follows from the zero of the discriminant of the quartic equ
tion ~20!,

@12~12m!g2#3127g4m50,

with the solution

g
*
2 ~m!5

1

~12A3 m!3
. ~21!

Before closing this section, let us mention that the simp
f case@8#, where the matrix elementsAk

a are constrained by
e

n-

iral

-

r

(
k51

N

Ak
aAk

b5dab ~a,b51, . . . ,M ! ~22!

instead of being Gaussian, can be analyzed using sim
methods. In a reaction process, the constraint~22! excludes
direct reactions. In this case, the eigenvalues of the ma
gG are either zeros~sinceA is rectangular! or equal tog
@because of Eq.~22!#. The resolvent forG in this case has the
form of a projector, with a fractionm of eigenvalues equal to
g, and the remaining fraction (12m) equal to zero

GG~z!5
12m

z
1

m

z2g
. ~23!

The addition law for the Blue’s functions yields the cub
Pastur’s equation@23#

Gf5
12m

z2Gf
1

m

z2Gf2g
. ~24!

Repeating the analysis for the end points of the previ
example shows that a structural change in the spectrum t
place at

g
* f
2 ~m!5@A3 @12m1A3 m#3. ~25!

While the first order terms inA3 m in Eqs. ~21! and ~25! are
equal@8#, the remainder is not. Note that Eq.~21! diverges as
m→1, while Eq. ~25! is symmetric aroundm50.5, with
g
* f
2 varying between 1 and 4.

V. CONFORMAL MAPPING

Under the substitutiong→ ig the matrix ensemble be
comes complex, taking us to the resonance scattering mo
As a result, the eigenvalue distribution is valued in the co
plex plane. For largez, the resolventG(z) is a holomorphic
function of z, whose form follows from Eq.~19! through
g→ ig. As z is decreased,G(z) will in general blow up~zero
denominator!, a signal that the function is no longer holo
morphic.

The boundary between the holomorphic and nonholom
phic solutions in thez plane, can be derived very general
using a conformal transformation that maps the cuts of
Hermitian ensemble onto the boundary of its non-Hermit
analog. Indeed, consider the case where a Gaussian ran
and Hermitian matrixR is added to an arbitrary matrixM .
The corresponding Blue’s function is

BR1M~u!5BR~u!1BM~u!2
1

u
5BM~u!1u. ~26!

Substitutingu→GM(z) we get

BR1M@GM~z!#5z1GM~z!. ~27!

Let w be a point in the complex plane for whic
GM(z)5GR1M(w). Using the definition of Blue’s functions
it follows thatw is located at

w5z1GM~z!. ~28!
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Now, if we were to note that in theholomorphicdomain, the
Blue’s function for the Gaussian and non-Hermitian e
semble isBiR52z11/z, then

BR1 iR5BR1BiR2
1

z
5
1

z
. ~29!

The anti-Hermitian Gaussiannullifies the contribution of the
Hermitian Gaussian~theR function in this case is zero!. This
observation together with Eq.~28! allows for relating a Her-
mitian resolvent to a non-Hermitian one in the holomorp
domain. Indeed, using Eq.~28! and the present observatio
it follows that

w5z22GR1M~z!, GiR1M~w!5GR1M~z! ~30!

throughout the holomorphic region. Similarly,

w5 i @z22GR1M~z!#, GR1 iM ~w!52 iGR1M~z!
~31!

after a simple rotation of the real and imaginary axes. T
transformation~31! maps the cuts of the Hermitian ensemb
onto the boundaries between the holomorphic and nonh
morphic regions of the non-Hermitian ensemble, as we n
illustrate.

Elliptic distribution. Consider first the simple case whe
H5HR1gHR , with HR being a random Gaussian. Since t
Blue’s function in the holomorphic region i
B51/z1(11g2)z, then the resolvent~inverse! is just

z2G5
1

G
1g2G. ~32!

The two solutions to Eq.~32! are

G~z!5
1

2~11g2!
@z6Az224~11g2!#. ~33!

Equations~33! are holomorphic everywhere in thez plane,
except on the cutC5@22A11g2,2A11g2# along thereal
axis. C is the support for the spectral density associated
H ~Wigner’s semicircle!.

In the holomorphic region, the non-Hermitian case f
lows by settingg to ig yielding B51/z1(12g2)z. Hence,

w2Ga5
1

Ga 2g2Ga ~34!

for the resolvent. Using the Hermitian solution~33! and the
mapping ~30!, we can map the Hermitian cutC onto the
boundary delimiting the holomorphic region for Eq.~34!,
that is

w5
1

11g2
$g2z6Az224~11g2!%, ~35!

with z5t6 i0 andt in C. Equation~35! spans an ellipsis with
axes 2/A11g2 and 2g2/A11g2. Forg251 this is just Gini-
bre’s circle.~Here for GUE the scale is set byb52 yielding
the radius of the disc to beA2. In the case of GOE, wher
the implicit scale isb51, the radius is 1.!
-

e

o-
w

o

-

Resonance scattering model. In the same spirit, the cut
associated toHR1gG, and given by Eq.~20!, can be mapped
onto the boundary]D delimiting the holomorphic region for
the non-Hermitian ensembleHR1 igG. The mapping~31!
requires the solution to Eq.~19! for the Hermitian ensemble
Indeed, after rewriting~19! in terms ofw and z, explicitly
inserting the formw5x1 iy , and choosingz5t @where real
t scans the cuts of Eq.~19!# one arrives at two coupled equa
tions for x, y, and t. Eliminating t, the equation of the
boundary reads

x25
4m

gy
2S g

11gy
2
m

y
2
1

gD
2

~36!

in agreement with@7#.
The results are displayed in Fig. 1 for different couplin

g and a fixed ratiom50.25. The locations of the cuts fol
lowing from the holomorphic resolvent through Eq.~20!
with g→ ig are found to be strongly correlated with th
shape of the envelopes following from the nonholomorp
resolvent. The envelopes can be regarded qualitatively
smearing of the cuts. For small couplings, sayugu50.1, the
vertical cut lies far on thex50 axis in the positivey half-
plane. It does not show up in our first figure. For larg
couplings, sayugu51, it emerges from the half-plane, an
gives rise to a bulge forugu54. Above the critical value
ugu54.44 following from Eq.~21!, the vertical cut drives the
upper island up, towardsy52` for ugu→`. At very large
couplings, sayugu5100, the islands are indistinguishab
from the cuts. The stability of the lower island compos
essentially of long-lived states~small width states! is ensured
by the zero modes ofG, as originally suggested by@3,5#.

Repeating the calculation above for thef case, using the
same transformation~31! with a resolventG now taken from
the solution of Eq.~24!, yield the following boundary:

x25
4m

gy
2S 12m

g2y
2
m

y
2gD 2 ~37!

between the holomorphic and nonholomorphic solutions.
note that a similar construction can be used to analyze
non-Hermitian chiral random matrix model@4#.

Let us finally mention, that the technique described h
does not allow us directly to goinside the islands of non-
analyticity, where the Green’s functions are nonholom
phic. For that we need to generalize the concepts of f
random variables for non-Hermitian random matrices as
now discuss.

VI. BLUE’S FUNCTIONS REVISITED

To discuss the generic case of non-Hermitian random
trix models, we need to generalize the concept ofR transfor-
mation. For that, consider the addition law~1!, rewritten in
the equivalent way@z→G112(z)[G#,

z5B1~G!1B2~G!2
1

G
. ~38!
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FIG. 1. The evolution of the boundary~thin
solid line! for various couplings at fixed ratio
m50.25. The dots are the numerical eigenvalu
generated from an ensemble of 50 matrices t
are 100 by 100. The solid bars are the positio
of the cuts following from~20! with g→ ig.
e

-
th
m

e
it-

tra
-

The generalization to non-Hermitian random matric
amounts to defining 232 Green’s functionsG, and Blue’s
functionsB, such that

B~G!5Z5S z 0

0 z̄D . ~39!

The addition law (R transform! becomes

Z5B1~G!1B2~G!2
1

G . ~40!

A diagrammatic proof of this relation will be given else
where@24#. The present method can be used to analyze
Green’s functions of Hermitian and non-Hermitian rando
matrix models in the entirez plane. We now illustrate this
assertion for the two cases discussed above.

Circular ensemble. Consider once more the cas
HR1 iHR . The generalized Green’s function for the Herm
ian Gaussian ensembleHR follows from a straightforward
generalization of Pastur’s equation@23# ~resummation of the
rainbow graphs!

G5
1

Z2S
5S ~41!

through the substitutionz→Z. Hence,

G1
1

G5Z. ~42!
s

e

The corresponding Blue’s function is

BR~A!5
1

A1A, ~43!

which is to be compared with Eq.~18!. For the non-
Hermitian Gaussian ensemble, thenew version of Pastur’s
equation is

G+ S 21 1

1 21D 5S, ~44!

where the multiplication is meant componentwise. The ex
minus sign follows from a sign flip in the ‘‘gluon propaga
tor’’ ~non-Hermitian case!, while summing over the rainbow
graphs@24#. The resulting Blue’s function is

BiR~A!5
1

A1S 21 0

0 1DAS 1 0

0 21D . ~45!

The Green’s function for the sum comes from Eq.~40!. In-
deed, if we were to define

G5S a b

b cD , ~46!

then Eq.~40! together with Eqs.~43! and ~45! give

S z 0

0 z̄D 5detG21S c 2b

2b a D 1S a b

b cD 1S 2a b

b 2cD .
~47!
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The equation for the off-diagonal element

05
2b

detG12b ~48!

has two types of solutions. The caseb50 corresponds to the
holomorphic solutiona5G51/z discussed above, sincea in
G is just the resolvent~5!. The nonzero case with
detG51/2, gives the nonholomorphic~here antiholomorphic!
solutiona5G5 z̄/2 in the complementary part of the com
plex plane, with a uniform eigenvalue distributio
n(z,z̄)51/2p as expected from Eq.~6!. This is just the result
derived by Ginibre and Girko@14#.

Random scattering model. Here we consider, for conve
nience, the ensemble of matrices

H852gAAT1 iHR , ~49!

with againA anN3M random complex matrix,HR a Her-
mitian random matrix. The HamiltonianH8 is related to
Hamiltonian~4! by multiplicative factori , resulting in rotat-
ing the axis of the eigenvalue plane byp/2. The generalized
Blue’s function for2gAAT follows from Eq. ~18! ~second
equation! through the substitutionz→A, g→2g. Hence,

BgAAT~A!52
mg

11gA1
1

A . ~50!

Using the addition formula we get

S z 0

0 z̄D 5
2mg

11gG1
1

G1S 21 0

0 1DGS 1 0

0 21D . ~51!

This equation admits a holomorphic and nonholomorphic
lution. The former is in agreement with the one discuss
above, while the latter reads (z5x1 iy)

G5a5
iy

2
1
1

2 S 2
1

g
2
m

x
2

g

12gxD ~52!

in agreement with@7#. The distribution of eigenvalues has
support only in the nonholomorphic region and follows fro
Eq. ~6!. Here, the boundary between the holomorphic a
nonholomorphic solution follows from the vanishing of th
off-diagonal elements ofG in Eq. ~46!, reproducing exactly
Eq. ~36!.

Deriving the resolvent for thef case is straightforward
since the problem reduces to finding the solution to the g
eralized Pastur equation@24#

Gg5
12m

Z2G̃f
1

m

Z2G̃f1g
, ~53!
.

s

-
d

d

n-

with

G̃f5S 21 0

0 1DGf S 1 0

0 21D . ~54!

The nonholomorphic solution for the resolvent~5! reads

Gf[a5
iy

2
1
1

2 Sm21

g1x
2
m

x
22x2gD ~55!

in agreement with@8#.

VII. CONCLUSIONS

We have shown how the concepts of addition and mu
plication of free random variables could be used to anal
some problems related to the Hermitian and non-Hermit
random matrix models, in the largeN limit and for the case
of strong non-Hermiticity. For the random scattering mod
our level and width distributions are in agreement with tho
discussed in@7# for strongly overlapping resonances. In th
sense, we have not much to add to their general phys
discussion.

Our approach extends the work of Voiculescu, Dykem
Nica, and Zee, and to our knowledge, is new. In particu
we have shown that the supports of complex eigenvalues
the non-Hermitian ensemble follow from a simple conform
transformation on the cuts of its Hermitian analog. Our a
proach offers a simple alternative to the replica and sup
symmetric methods for a variety of random matrix models
the largeN limit. A comprehensive comparison, includin
the issue of 1/N corrections, is unfortunately beyond th
scope of this work.

The resonance scattering model discussed here and
solutions presented above, could be used to discuss s
issues related to chaotic behavior in complex systems, s
as the instanton liquid model, conductance in quantum d
microwave cavities, or nuclear dynamics. We hope to
dress some of these issues next.
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