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Using the standard concepts of free random variables, we show that for a large class of non-Hermitian
random matrix models, the support of the eigenvalue distribution follows from their Hermitian analogs using
a conformal transformation. We also extend the concepts of free random variables to the class of non-
Hermitian matrices, and apply them to the models discussed by Ginibre-(@itigiic ensemblg[J. Ginibre,

J. Math. Phys6, 1440 (1969; V. L. Girko, Spectral Theory of Random Matricés Russian (Nauka,
Moscow, 1988] and Mahaux-Weidenntler (chaotic resonance scatteryngC. Mahaux and H. A. Weiden-
muller, Shell-model Approach to Nuclear Reactididorth-Holland, Amsterdam, 196P
[S1063-651%97)09704-3

PACS numbes): 05.45+b, 11.15.Pg, 24.60.Lz, 11.80.Gw

I. INTRODUCTION arguments are applied to Ginibre-Girkg’54] and Mahaux-
Weidenmiier's [15] random matrix models. In Sec. VI, we

The distribution of eigenvalues of complex and large ran-generalize the concept & transforms to the non-Hermitian
dom matrices is of relevance to a variety of physical prob<ase, and use it to analyze the resolvent of non-Hermitian
lems. Non-Hermitian random matrices appear naturally irandom matrix models. Our conclusions are summarized in
the evolution of dissipative quantum many-body systgtls ~ Sec. VII.
in quantum chaotic scatteriig], in quantum optic$3], and
possibly in quantum chromodynamigs].

The distribution of complex energies of unstable quantum Il. R AND S TRANSFORMATIONS

systems in the framework of random matrix models, has agdition and multiplication of free random variables can
been investigated in some details by Sokolov and Zelevinskye assessed usifijands transformation§12]. Specifically,
[5], following on the original work of Weidenniier and  {he R transformation is additiveR; , ,=R,+R,, and theS
co-workers[1,6]. Alternative and extended analyses can b&ransformation is multiplicativéS, . ,= S, S,.

also found in[7] using the replica method, and 8] using For the sum, if we were to define a Blue’'s function
the supersymmetric method. For large matrices, a structurﬁ(z) [13] as the functional inverse of a Green’s function
change in the eigenvalue distribution within the complexG(Z) that isB[ G(2)]=G[B(2)]=z, then theR function is
plane was observed in the case of strong non-Herm|t|C|tySimp|y R(2)=B(z)+1/z. Physically, theR transform is
The level density has been used to assess the statistical digsme pertinent self-energy in the planar approximafis].

tribution of the resonance widths in (_:haotic scqttering V_VithThe additive property of thR transform implies the addition
large scattering channe]g], and the time delay in chaotic law [12,13

scattering9,10]. The latter may be of relevance for a quan-
titative assessment of quantum chaffg]. Weak non-
Hermitian ensembles were recently investigatefilih).

In this paper, we would like to show how to evaluate, in a B1+2(2)=B1(2)+Ba(2) — — 1)
straightforward way, the supports for the level density, as
well as the eigenvalues distribution for a large class of non-
Hermitian and random matrices using the concepts of freéor the Blue’s functions. Hence, the problem of finding the
random variables as developed by Voiculescu, Dykema, angpectral distribution of the sum of two free random matrices
Nica[12] and popularized by Zgd 3]. In Sec. Il, we outline is linear, and follows from the simple algorithm: Firl,
the general definitions for the standaBcandR transforma- and G,, construct their functional inversd®, andB,, add
tions, as known for Hermitian random matrices. In Sec. lll,them through Eq(1), and invertB,,, to getG;.,. The
we discuss the resonance matrix model as an example ofspectral density of the sum is the discontinuity @f -,
non-Hermitian random matrix model. In Sec. IV using thealong the real axis. The zeroesBf(z)=0 characterize the
concepts ofS andR transforms we derive the spectral den- end points of the spectral dens{ty3], and reflect structural
sity of its Hermitian analog. In Sec. V, we show how the changes in the underlying spectrum.
support for a non-Hermitian spectral density follows from For the product, if we were to defing(z) as a solution
the Hermitian one using a conformal transformation. Ourof [12]
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1 ( 1 ) IV. HERMITIAN CASE
—1=Zz

—G| —— 2
x(2) “\x(2) @ First consider the case of &x N real symmetric product
matrix I'g;=A2A2. In the largeN limit, the spectral function

then theS function is simply is connected to the one of the randdix N matrix A as

% va(N) 1 J4-z
S(Z)=¥X(Z)- 3 VIN Nz=)\?)= |A)\| :ET 7

The numerator of Eq(7) is just Wigner's semicircular law
[19]. The case of rectangulaNXxXM matrices with
N,M—o but m=M/N fixed, follows by truncation using
the projectof20]

The S transform of the product of two free random matrices
is the product of theirS transforms that isS;,,=S;S,.
GivensS; «», the resolvenG, «, follows through Eqgs(2) and

(3) in reverse order.

P = diag(1,...,1,0,...,0 ®)
ll. RESONANCE SCATTERING MODEL lag(TwT'AT)

To make part of our subsequent discussions clear, we will
use the non-Hermitian random matrix model introduced bythat isT=T"SP. We recognize immediately the problem of
Mahaux and Weidenfiier for resonance scatterifd5] as  “multiplication” of the random matrixI'S by the determin-
inspired by the Weisskopf and Wigner effective Hamiltonianistic projector P. Following the multiplication algorithm
[16], to illustrate some of our assertions. In brief, a quantun{12,20], we construct below the resolvent for the product.
system composed ofN(—M) closed andVl open channels First, we construct the resolvent for the projector
can be described by the effective scattering Hamiltonian

1_ 1 1 1
HeHotigl, T—AAT " Gp(2)= (Tr—5=m—=+(1-m)-. 9

which isNXN dimensional A is an asymmetriéNxX M ran- The S transform is

dom matrix, andy an overall coupling. Unitarity enforces the

. ) ) L 1+z
form of I' used in Eq.(4). Wigner's condition implies Sp(z)= X (10)
g<0. The matrix elementd] characterize the transition be- m+2
tween the N— M)-internal channels ant-external chan- L

) . The resolvent for the square of the Gaussian is

nels, and are assumed to be independent of the scattering
energy. FoiM =0, the Hamiltonian is real and the spectrum 1 4\ 12
is bound. ForM #0, the Hamiltonian is complex, with all Gp==|1-(1- —) (11)
states acquiring a width. 2 z

The resolventG(z) associated to Ed4) is defined as . o .
@ q4) Its discontinuity along the real axis reproduces Ef). The

correspondingy andS transformations are

1 1
G(2)= N<TrZ_H > ) . 1
XW= g2 Sa2= 135 (12

with complex valued poles reflecting the energy and width of

the resonance states. Its imaginary part is related to the totab the product matrix has

lifetime (time delay in the scattering process. The averaging

in Eq. (5) corresponds to the GOE ensemble Fbg, with 1

the transition matrix elementd2 treated as independent S=Sp2Sp= 1 (13
Gaussian variablefg7]. The simpler casé¢” f case” [6,8]),

where the matrix elements are fixed, will be briefly discussedind

later. In its domain of analyticitp, G(z) is a holomorphic

function ofz. In the complemenb, G(z) is in general non- _ z
holomorphic, with a nonvanishing spectral distribut{dr7] XWxP= 117 (m+2) (14)
1 4G(2) Inverting Eq.(14), and insertingz(x) into Eq.(2) we get for
v(z,2)= ———. (6)  the resolvent
™ 9z
1-m 1 1-m 2 Amlv2
The latter provides for a statistical analysis of the character- GC2)=—+3 11{( S 1) - ] (15

istics of the resonances in chaotic scattering for a large num-
ber of channel$7,9,18. It can also be used to discuss Dicke The spectral density follows from the discontinuity of Eq.
super-radiance in quantum optic3]. (15) along the real axis in the form
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1[4m [(1-m |2]? N
v(x)=(1—m)5(>\)+5{7—(T—l>} . (18 g,lAEAE:éSab (a,b=1,... M) (22)

This result was first obtained if21], using other methods. jnstead of being Gaussian, can be analyzed using similar
The first term, originating from the pole Zl/represents methods. In a reaction process, the constré2@} excludes
(N—M) zero modes of the matrik. direct reactions. In this case, the eigenvalues of the matrix
Now we could “add” the random Hamiltoniaklg. Itis  gI' are either zerogsince A is rectangular or equal tog
convenient first to solve the Hermitian problem [pecause of Eq22)]. The resolvent foF in this case has the

Hy=Hg+gl'. This problem is immediately solved using the form of a projector, with a fractiom of eigenvalues equal to
R transformation(Blue’s function), since the resolvent for g and the remaining fraction (m) equal to zero

GOE is known to be

1-m m
G(2)=3(z—z°-4) (17) Gr(2)=——+ =5 (23)
and the resolvent fdr is given by Eq(15). The correspond-  The addition law for the Blue's functions yields the cubic
ing Blue’s functions are straightforward to find Pastur's equatiofi23]
1 1-m m
=7+ — =
Bi(2)=2+, Gf_Z_GerZ_Gf_g. (24)
mg 1 Repeating the analysis for the end points of the previous
Ba(2)= 1-gz + Z’ (18) example shows that a structural change in the spectrum takes
place at
where we have reinstated the coupligg The labels 12) ) s 5
refer toHgry, respectively. From the addition law follows 92 (m=[[1-m+3m]. (29
the resolventG of the sumHy, as a solution to a cubic
equation(Cardano clags While the first order terms if/m in Egs.(21) and(25) are
equal[8], the remainder is not. Note that EQ1) diverges as
1 mg m—1, while Eq. (25 is symmetric aroundn=0.5, with
z 2). (19 42 varying between 1 and 4.

=G " 1-g6n &

Out of the three solutions to this equation, we choose V. CONFORMAL MAPPING
uniquely the one respecting the positivity and normalizability o . .
of the spectral density. Structural changes in the spectral den- Under the substitutiory—ig the matrix ensemble be-

sity can be easily read out from the zerosB3{z)=0 (end ~ comes complex, taking us to the resonance scattering model.
pointy, where B is the Blue’s function for the sum. This AS aresult, the eigenvalue distribution is valued in the com-

equation is fourth ordefFerrari class plex plane. For large, the resolvent(z) is a holomorphic
function of z, whose form follows from Eq(19) through
mg® g—ig. Aszis decreased;(z) will in general blow up(zero
— 1%+ (1_—2)2+1=O (200 denominatoy, a signal that the function is no longer holo-
9 morphic.

The boundary between the holomorphic and nonholomor-
(i=1,2,3,4). A structural chang@isually a phase transition phic solutions in thez plane, can be derived very generally

in the underlying systelmhappens when two ardd; A using a conformal transformation that maps the cuts of the
and [As,A,] ymegrgg int):)] thpep ondi.e A2=A3)c{ (I:1 tﬁ]e Hermitian ensemble onto the boundary of its non-Hermitian

-apalog. Indeed, consider the case where a Gaussian random
and Hermitian matrix® is added to an arbitrary matrid .
The corresponding Blue’s function is

and defines all the end points of the spectrdn=B(z),

cases considered [22].)
The condition for the structural chandgmerging point
follows from the zero of the discriminant of the quartic equa-

. 1
tion (20), Brem(U)=Br(u) +By(u)— = =By(u)+u. (26
1—(1-m)g?]3+27g*m=0,
[ 97] J Substitutingu— Gy, (z) we get
with the solution

Br+m[Gm(2)]=2+Gy(2). 27
2 ):; (22) Let w be a point in the complex plane for which
g*( 3 3" . L s .
(1—3m) Gm(2) =GR m(w). Using the definition of Blue’s functions,

it follows thatw is located at
Before closing this section, let us mention that the simpler

f case[8], where the matrix elements} are constrained by w=2z+Gy(2). (28
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Now, if we were to note that in thieolomorphicdomain, the Resonance scattering modéh the same spirit, the cuts
Blue's function for the Gaussian and non-Hermitian en-associated téig+gl', and given by Eq(20), can be mapped
semble isB;r= —z+ 1/z, then onto the boundaryD delimiting the holomorphic region for

the non-Hermitian ensemblez+igIl’. The mapping(31)
requires the solution to E@19) for the Hermitian ensemble.
Indeed, after rewriting19) in terms ofw and z, explicitly
inserting the formw=x+iy, and choosing=t [where real
The anti-Hermitian Gaussiamullifiesthe contribution of the t scans the cuts of Eq:]_g)] one arrives at two Coup|ed equa-

Hermitian Gaussiafthe R function in this case is zejoThis  tjons for x, y, and t. Eliminating t, the equation of the
observation together with E¢28) allows for relating a Her-  poundary reads

mitian resolvent to a non-Hermitian one in the holomorphic
domain. Indeed, using E§28) and the present observation,
it follows that N

1
z

N| kP

Br+ir=Br1TBir— (29

g m 1)2

(36)
w=z—2Ggim(2), Gir+m(W)=Ggrim(2) (30

in agreement with7].
The results are displayed in Fig. 1 for different couplings
—if7— _ — g and a fixed ratiom=0.25. The locations of the cuts fol-
W=ilz2=2Gru(@)]) - Graiml(W) 'Criu(2) (31) lowing from the holomorphic resolvent through E@®O)
with g—ig are found to be strongly correlated with the
after a simple rotation of the real and imaginary axes. Theshape of the envelopes following from the nonholomorphic
transformation31) maps the cuts of the Hermitian ensembleresolvent. The envelopes can be regarded qualitatively as a
onto the boundaries between the holomorphic and nonholesmearing of the cuts. For small couplings, $gy=0.1, the
morphic regions of the non-Hermitian ensemble, as we nowertical cut lies far on the&«=0 axis in the positivey half-
illustrate. plane. It does not show up in our first figure. For larger
Elliptic distribution. Consider first the simple case where couplings, saylg|=1, it emerges from the half-plane, and
H=Hg+gHRg, with Hg being a random Gaussian. Since thegives rise to a bulge fofg|=4. Above the critical value
Blue's function in the holomorphic region is |g|=4.44 following from Eq.(21), the vertical cut drives the
B=1/z+(1+g?)z, then the resolventinverss is just upper island up, towardg= — for |g|—o. At very large
couplings, say|g|=100, the islands are indistinguishable

throughout the holomorphic region. Similarly,

7 G= i+ng 32) from the cuts. The stability of the lower island composed
G ' essentially of long-lived statésmall width statesis ensured
by the zero modes df, as originally suggested H3,5].
The two solutions to Eq32) are Repeating the calculation above for thease, using the
same transformatio(81) with a resolventz now taken from
G(2)= 1 [z =41+ ). (33) the solution of Eq(24), yield the following boundary:
2(1+9g°)
2
Equations(33) are holomorphic everywhere in theplane, X2=4_m_(1—_m_ T_g) (37)
except on the cu€=[ —21+g? 2y1+g?] along thereal gy \g-y Yy
axis. C is the support for the spectral density associated to
H (Wigner’'s semicirclg between the holomorphic and nonholomorphic solutions. We

In the holomorphic region, the non-Hermitian case fol-note that a similar construction can be used to analyze the
lows by settingg to i y yielding B=1/z+(1—y?)z. Hence,  non-Hermitian chiral random matrix modgt].
Let us finally mention, that the technique described here
W—Ga=— — 2G? (34) does |_1c_)t allow us directly to g'mside.the islands of non-
G? analyticity, where the Green’s functions are nonholomor-
phic. For that we need to generalize the concepts of free

for the resolvent. Using the Hermitian solutigd3) and the  random variables for non-Hermitian random matrices as we
mapping (30), we can map the Hermitian cul onto the npow discuss.

boundary delimiting the holomorphic region for E4),

that is
VI. BLUE'S FUNCTIONS REVISITED
1 . . .
= 5{0%2x 22— 4(1+ g%}, (35 To discuss the generic case of non-Hermitian random ma-
1+9 trix models, we need to generalize the concepR afansfor-
mation. For that, consider the addition lad), rewritten in

the equivalent wayz— G, ,,(2)=G],

w

with z=t=i0 andt in C. Equation(35) spans an ellipsis with
axes 2{/1+g? and 2y%/\1+g>. Forg?=1 this is just Gini-
bre’s circle.(Here for GUE the scale is set =2 yielding
the radius of the disc to be2. In the case of GOE, where

1
the implicit scale is8=1, the radius is }. 2=B1(G)+B(C)~ 5. (38)
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g=-1, m=0.25
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FIG. 1. The evolution of the boundarhin
solid ling) for various couplings at fixed ratio
m=0.25. The dots are the numerical eigenvalues
generated from an ensemble of 50 matrices that
are 100 by 100. The solid bars are the positions
of the cuts following from(20) with g—ig.
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The generalization to non-Hermitian random matricesThe corresponding Blue’s function is
amounts to defining 2 Green’s functiongj, and Blue’s

i 1
functions B, such that Be(A)= Z+A’ 43)
z 0
B(G)=Z= 0 : (39  which is to be compared with Eq(18). For the non-
z . . . \
Hermitian Gaussian ensemble, thew version of Pastur’'s
The addition law R transforml becomes equation is
1 <_1 1) s
o =3, 44
Z=Bl(g)+82(g)—a (40 g 1 -1 (44)

. . . . . . where the multiplication is meant componentwise. The extra
A diagrammatic proof of this relation will be given else- minus sign follows from a sign flip in the “gluon propaga-

where[24]. The present method can be used to analyze thg,» (non-Hermitian case while summing over the rainbow
Green'’s functions of Hermitian and non-Hermitian randomgraphs[24]. The resulting Blue’s function is
matrix models in the entirg plane. We now illustrate this
assertion for the two cases discussed above. -1 0 1 0

Circular ensemble Consider once more the case Bir(A)= 270 o 1) A(O —l)' (45)
Hg+iHR. The generalized Green’s function for the Hermit-
ian Gaussian ensemblér follows from a straightforward  The Green’s function for the sum comes from E4Q). In-
generalization of Pastur's equatip®3] (resummation of the  geed if we were to define
rainbow graphps

1 g=
g=-—~<=2 (41)

a b)
b ¢/’ (46)

then Eq.(40) together with Eqs(43) and(45) give

—a b)
b -c¢/
(47)

through the substitutiom— Z. Hence,

(z g_ _1<c —b) a b
g+ézz. (42) 07/ Y b al”

+
b ¢




The equation for the off-diagonal element

OZE‘FZ

b (48

has two types of solutions. The cdse 0 corresponds to the
holomorphic solutiora=G=1/z discussed above, sinegin
G is just the resolvent(5). The nonzero case with
deG=1/2, gives the nonholomorphibere antiholomorphjc
solutiona=G=2/2 in the complementary part of the com-
plex plane, with a uniform eigenvalue distribution
v(z,2) = 1/27 as expected from E@6). This is just the result
derived by Ginibre and Girk¢14].

Random scattering modeHere we consider, for conve-
nience, the ensemble of matrices

H' =—gAAT+iHg, (49

with againA an NXM random complex matrixig a Her-
mitian random matrix. The Hamiltoniahl’ is related to
Hamiltonian(4) by multiplicative factor, resulting in rotat-
ing the axis of the eigenvalue plane By2. The generalized
Blue’s function for —gAAT follows from Eq.(18) (second
equation through the substitution— .4, g— —g. Hence,

B = mg 0)
gAAT(A)—_1+gA+Z- (50)
Using the addition formula we get
z 0 -mg 1 -1 0 1 0
0 21 1596 ¢ 0 1% —1) ©Y
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with

- -1 0 1 0
gf:( 0 1>gf(0 _1)- (54)

The nonholomorphic solution for the resolveébj reads

iy 1
a—§+§(

Gi= (55

in agreement withi8].

VIl. CONCLUSIONS

We have shown how the concepts of addition and multi-
plication of free random variables could be used to analyze
some problems related to the Hermitian and non-Hermitian
random matrix models, in the larde limit and for the case
of strong non-Hermiticity. For the random scattering model,
our level and width distributions are in agreement with those
discussed i 7] for strongly overlapping resonances. In this
sense, we have not much to add to their general physical
discussion.

Our approach extends the work of Voiculescu, Dykema,
Nica, and Zee, and to our knowledge, is new. In particular,
we have shown that the supports of complex eigenvalues for
the non-Hermitian ensemble follow from a simple conformal
transformation on the cuts of its Hermitian analog. Our ap-
proach offers a simple alternative to the replica and super-
symmetric methods for a variety of random matrix models in
the largeN limit. A comprehensive comparison, including

This equation admits a holomorphic and nonholomorphic sothe issue of I corrections, is unfortunately beyond the
lution. The former is in agreement with the one discussedcope of this work.
above, while the latter readg€x+iy) The resonance scattering model discussed here and the
solutions presented above, could be used to discuss some
issues related to chaotic behavior in complex systems, such
as the instanton liquid model, conductance in quantum dots,
microwave cavities, or nuclear dynamics. We hope to ad-
in agreement with7]. The distribution of eigenvalues has a dress some of these issues next.
support only in the nonholomorphic region and follows from
Eq. (6). Here, the boundary between the holomorphic and
nonholomorphic solution follows from the vanishing of the
off-diagonal elements of in Eq. (46), reproducing exactly This work was supported in part by the U.S. DOE Grant
Eq. (36). No. DE-FG-88ER40388, by the NSF Grant No. NSF-PHY-
Deriving the resolvent for thé case is straightforward, 94-21309, by the Polish Government Projé&BN) Grant
since the problem reduces to finding the solution to the genNos. 2P03B19609, 2P03B08308, and by the Hungarian Re-
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